In this work, a three-layers Mallard-Le Chatelier inspired theoretical model is developed to fully characterise the steps occurring during the flame propagation of combustible dusts/air. The model is based on the hypothesis that the dust flame propagation follows a homogeneous path: the dust-air mixture is pre-heated up to the volatile point (VP), at which production of volatiles occurs, thanks to the back-diffusion of heat from the combustion zone of the flame to the colder zones. The volatiles produced are then heated up to the ignition temperature and enter in the combustion zone. The flame burning velocity is the results of the coupling between heating rate, pyrolysis and/or evaporation/sublimation rate and volatiles combustion rate. The rate of formation of volatiles was measured by means of TG/DSC analysis. The laminar burning velocity of gases was computed by simulating the gas flame propagation in a tube starting from the measured gas compositions (by literature data or FTIR analysis).
Read full abstract