Abstract

Seismic anisotropy provides insight into palaeo and recent deformation processes and, therefore, mantle dynamics. In a first step towards a model for the North American upper mantle with anisotropy characterized by a symmetry axis of arbitrary orientation, aimed at filling the gap between global tomography and SKS splitting studies, we inverted long period waveform data simultaneously for perturbations in the isotropic S-velocity structure and the anisotropic parameter , in the framework of normal mode asymptotic coupling theory (NACT). The resulting 2-D broad-band sensitivity kernels allow us to exploit the information contained in long period seismograms for fundamental and higher mode surface waves at the same time. To ensure high quality of the retrieved regional upper-mantle structure, accurate crustal corrections are essential. Here, we follow an approach which goes beyond the linear perturbation approximation and split the correction into a linear and non-linear part. The inverted data set consists of more than 40 000 high quality three component fundamental and overtone surface waveforms, recorded at broad-band seismic stations in North America from teleseismic events and provides a fairly homogeneous path and azimuthal coverage. The isotropic part of our tomographic model shares the large-scale features of previous regional studies for North America. We confirm the pronounced difference in the isotropic velocity structure between the western active tectonic region and the central/eastern stable shield, as well as the presence of subducted material (Juan de Fuca and Farallon Plate) at transition zone depths. The new regional 3-D radial anisotropic model indicates the presence of two distinct anisotropic layers beneath the cratonic part of the North American continent: a deep asthenospheric layer, consistent with present day mantle flow, and a shallower lithospheric layer, possibly a record of ancient tectonic events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.