Water pollution poses a significant threat to both human health and ecosystem integrity. Chemical pollutants such as dyes and pesticides affect the water quality and endanger aquatic life. Among the methods for water purification from organic pollutants, photodegradation is certainly a valid technique to decrease such contaminants. In this work, pristine NiO, ZnO, and NiO-ZnO photocatalysts were synthesized by the homogeneous co-precipitation method. X-ray diffraction confirms the formation of a photocatalyst consisting of ZnO (Hexagonal) and NiO (Cubic) structures. The crystalline size was calculated by the Scherrer formula, which is 19 nm for the NiO-ZnO photocatalyst. The band gap measurements of the prepared samples were obtained using the Tauc Plot, equation which is 2.93 eV, 3.35 eV and 2.63 eV for NiO, ZnO, and NiO-ZnO photocatalysts, respectively. The photocatalytic performance of NiO-ZnO nanocomposite was evaluated through the degradation of Methylene Blue and Nile Blue dyes under sunlight, and Bentazon herbicide under a UV light. Photocatalyst degradation efficiency was 95% and 97% for Methylene Blue and Nile Blue in 220 min under sunlight while a degradation of 70% for Bentazon after 100 min under UV light source was found.
Read full abstract