Due unexpected nature of renewable energy systems, the (Wind/Diesel/Battery) (W/D/B) off-grid system has initially been investigated at a South Sinai location in Egypt for home-scale consumption. Eight different systems, each of which consists of a small wind turbine, storage batteries, and diesel generator, are investigated in accordance with the varying needs of the power loads and seasonal weather data. The major goal is to investigate how adding wind power as an energy source will affect the price of electricity generated while taking into account the cost of reducing CO2 emissions as an external benefit of the wind turbine, which emits no pollutants during operation. In order to compare a Taguchi OA design to a two-level full factorial design to evaluate the systems at two separate sites (South Sinai and the Western Desert in Egypt), a design evaluation tool in DOE++ will be used. To pinpoint the crucial variables and analyze the impact of six different factors on eight different sets, Taguchi OA is used. The proportion of power shortfall is a production indicator, while the net present cost (NPC) and cost of energy (COE) are used as economic indicators. The simulation results demonstrate that W/D/B systems are economically viable for the hypothetical community site when using HOMER software, with electricity generated at a cost of about 0.285$/kWh without accounting for external benefits and 0.221$/kWh if CO2 emissions are competitive with diesel-only systems, where COE is 0.432$/kWh. As a new evaluation approach, the Box-Cox transformation calculated the best λ is about −2 at the two locations, indicating similar technique behaviors, and the fitted probability shows, meaning that the significant impact of system components are wind turbines. Regression model of CO2 emission is demonstrated to be successful for estimates at the Western Desert location than the South Sinai region