The discovery that homeotic genes in Drosophila are conserved and utilized for embryonic development throughout the animal kingdom, including humans, revolutionized the fields of developmental biology and evolutionary developmental biology (evo-devo). In a pair of back-to-back papers published in Cell in 1984, researchers at the Biozentrum in Basel, Switzerland, showed that the homeobox – previously identified as a sequence shared by homeotic genes in Drosophila – was also present in the genome of diverse animals. The first paper (McGinnis et al., 1984a) showed that genomes of both invertebrates and vertebrates contain sequences that cross-hybridized with Drosophila homeobox probes. The second paper (Carrasco et al., 1984) identified a cross-hybridizing sequence in the model system Xenopus laevis. They then isolated the first vertebrate homeobox-containing gene by cloning and sequencing of the corresponding genomic region. Finally, they showed that this gene (AC1, later renamed HoxC6) was expressed during embryonic development, the first evidence that developmentally expressed Drosophila genes could be used to isolate regulators of vertebrate embryonic development. These findings led to a flurry of activity in the evo-devo field, initially focused on isolating Hox genes across diverse species, and then expanding to isolation of other gene families based on Drosophila orthologs, an approach that continues today. This led to the notion of a conserved genetic toolkit for embryonic development, currently accepted, but unexpected at the time of its discovery. We attempt to provide some context for the sea-change in thinking that these discoveries brought about by referring to Jean Piaget's theories about the sequential acquisition of scientific knowledge.
Read full abstract