Abstract

While roots and leaves have evolved independently in lycophytes, ferns and seed plants, there is still confusion regarding the morphological evolution of ferns, especially in whisk ferns, which lack true leaves and roots and instead only exhibit leaf-like appendages and absorptive rhizoids. In this study, analyses of comparative transcriptomics on positively selected genes were performed to provide insights into the adaptive evolution of whisk fern morphologies. Significantly clustered gene families specific to whisk ferns were mainly enriched in Gene Ontology (GO) terms “binding proteins” and “transmembrane transporter activity”, and positive selection was detected in genes involved in transmembrane transporter activities and stress response (e.g., sodium/hydrogen exchanger and heat shock proteins), which could be related to the adaptive evolution of tolerance to epiphytic environments. The analysis of TF/TR gene family sizes indicated that some rapidly evolving gene families (e.g., the GRF and the MADS-MIKC families) related to the development of morphological organs were commonly reduced in whisk ferns and ophioglossoid ferns. Furthermore, the WUS homeobox-containing (WOX) gene family and the knotted1-like homeobox (KNOX) gene family, both associated with root and leaf development, were phylogenetically conserved in whisk ferns and ophioglossoid ferns. In general, our results suggested that adaptive evolution to epiphytic environments might have occurred in whisk ferns. We propose that the simplified and reduced leaf and root system in whisk ferns is the result of reduction from the common ancestor of whisk ferns and ophioglossoid ferns, rather than an independent origin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call