Abstract

This study aimed to explore critical genes as potential biomarkers for the diagnosis and prognosis of colorectal cancer (CRC) for clinical utility. To identify and screen candidate genes involved in CRC carcinogenesis and disease progression, we downloaded microarray datasets GSE89076, GSE73360, and GSE32323 from the GEO database identified differentially expressed genes (DEGs), and performed a functional enrichment analysis. A protein-protein interaction network was constructed, and correlated module analysis was performed using STRING and Cytoscape. The Kaplan-Meier survival curve shows the survival of the hub genes. The expression of cyclin-dependent kinase (CDK1), cyclin B1 (CCNB1), and PCNA in tissues and changes in tumor grade were analyzed. A total of 329 DEGs were identified, including 264 upregulated and 65 downregulated genes. The functions and pathways of DEGs include the mitotic cell cycle, poly(A) RNA binding replication, ATP binding, DNA replication, ribosome biogenesis in eukaryotes, and RNA transport. Forty-seven Hub genes were identified, and biological process analysis showed that these genes were mainly enriched in cell cycle and DNA replication. Patients with mutations in CDK1, PCNA, and CCNB1 had poorer survival rates. CDK1, PCNA, and CCNB1 were significantly overexpressed in the tumor tissues. The expression of CDK1 and CCNB1 gradually decreased with increasing tumor grade. CDK1, CCNB1, and PCNA can be used as potential markers for the diagnosis and prognosis of CRC. These genes are overexpressed in colon cancer tissues and are associated with low survival rates in CRC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call