A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted “forest of peaks” observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process. Moreover, a new substrate contact has been added in the new design for an AC voltage supply for the Wheatstone bridge to reduce parasitic signal influence via the EAM (Electromechanical Amplitude Modulation) in our homemade CRI system. Measurements on a bulk Al sample show the expected force dependence of the CR frequency. Meanwhile, fitting of the measured contact-resonance spectra was applied based on a Fano-type line shape to reveal the material-specific signature of a single harmonic resonator. However, noise is greatly increased with the bending mode and contact force increasing on viscoelastic samples. Then, to avoid unspecific peaks remaining in the spectra of soft samples, cantilevers with integrated piezoelectric actuators (PEAs) were designed. The numbers and positions of the actuators were optimized for specific CR vibration modes using analytical modeling of the cantilever bending based on the transfer-matrix method and Hertzian contact mechanics. To confirm the design of the PCM with a PEA, finite element analysis (FEA) of CR probing of a sample with a Young’s modulus of 10 GPa was performed. Close agreement was achieved by Fano-type line shape fitting of amplitude and phase of the first four vertical bending modes of the cantilever. As an important structure of the PCM with a PEA, the piezoresistive Wheatstone bridge had to have suitable doping parameters adapted to the boundary conditions of the manufacturing process of the newly designed PCM.
Read full abstract