A specific optimized configuration for low threshold organic semiconductor laser based on a holographic polymer dispersed liquid crystal (HPDLC) transmission grating was demonstrated. Here the organic semiconductor films and phase separated liquid crystal (LC) molecules were oriented along the direction of the HPDLC grating grooves. The influence of the organic semiconductor chain orientation and the excitation polarization on the optical properties of the materials has been investigated. Especially, when polymer chain orientation, LC molecules and pump light polarization are consistent with the direction of the grating grooves, the performance of the outgoing laser is greatly improved. Up to 9.78% conversion efficiency with a threshold lower to 0.12 μJ/pulse can be obtained, indicating their potential for high-performance organic optoelectronics.