Dissolved organic matter (DOM), a heterogeneous mixture of low concentrations of organic matter draining from soils, plays a significant role in soil C cycling and in nutrient and pollutant transport. DOM from undisturbed soil profiles has rarely been studied. Hydrophobic acids (Ho) and hydrophilic acids (Hi), the major components of DOM, were recovered, using XAD-8 and XAD-4 resins in series, from waters draining in winter and in spring periods from well-drained and poorly drained Irish grassland soil profiles in lysimeters. Waters were collected from 45 soil undisturbed lysimeters at the Teagasc Research Centre, Johnstown Castle, Wexford, Ireland. Four Irish representative soils had been collected as undisturbed 1.0-m-deep monoliths, transported to the experiment site and arranged randomly in an experimental facility. Water collections were carried out in winter and spring periods. The DOM was isolated and fractionated using an XAD-8 and XAD-4 resins in-tandem procedure, and hydrophobic acids (Ho) and hydrophilic acids (Hi) were isolated. The amounts of DOM recovered in the winter period were much greater than those in the spring period, and the soil types had only minor influences on the DOM concentrations recovered. The Ho and Hi fraction contents ranged from 62 to 90 and 10 to 28%, respectively, of the total DOM content extracted. The Hi acids were most enriched in 13C, and considered to reflect greater microbial inputs. The neutral sugar (NS) contents for the Ho and Hi fractions were in the range of 15 to 52 μg mg−1, with the Hi fraction most enriched. The amino acids (AAs) for the Ho and Hi fractions varied from 0.6 to 2.4%, and the total AAs and NS of the Ho acids were well correlated. The DOM fractions from the drainage waters contained much less AAs and NS than the corresponding fractions in the parent soils. The solid- and liquid-state NMR data indicated organic structures with low aromaticity, significant amounts of carbohydrate and with lesser amounts of peptide structures, and with long-chain methylene (CH2)n and methine (-CH-) groups. The application of a variety of wet chemistry and of spectroscopy procedures has given a more in-depth awareness of the compositions of the DOM in the drainage waters from four different soils in 1.0-m-deep lysimeter arrangements. Based on wet chemistry analyses, and FTIR and liquid- and solid-state NMR spectrometry, it is clear that there are some differences between the compositions of the DOM fractions recovered. Alkyl functionalities dominated the structures. These included significant amounts or O-alkyl (predominantly carbohydrate), and with lesser (and variable amounts in the different fractions) aromatic structures (to which aromatic amino acid components were considered to be significant contributors), and with no evidence for lignin-derived structures The results suggest that, during residence in the soil solution, microbiological processes transform the SOM components released into products that are greatly different from their materials of origin in the SOM.