With the aim of simultaneously modulating the epigenetic system and the protein kinase pathway, we selected the enzyme histone deacetylase (HDAC) and the Rho-associated protein kinases (ROCK) as desired targets to develop potential multitarget anticancer agents with additional antimetastatic properties. We report here the rational design, synthesis, and biological evaluation of the first-in-class HDAC/ROCK multitarget inhibitors in pancreatic ductal adenocarcinoma (PDAC) and triple-negative breast cancer (TNBC). A molecular docking study performed with the Gold software was used to develop HDAC/ROCK multitarget inhibitors. IC50 values were determined by enzyme assays. The cytotoxicity, anti-migratory and anti-invasive properties of the inhibitors were evaluated using triple-negative breast cancer cells (MDA-MB-231 and HCC 1973) and pancreatic ductal adenocarcinoma cells (Panc-1 and MiaPaCa-2). C-9 showed significant inhibition of HDAC6, ROCK1 and ROCK2. At the same time, this compound showed strong antiproliferative effects on MDA-MB-231, MiaPaCa-2 and Panc-1 cell lines with IC50 values of 5.81 μM, 3.87 μM and 19.57 μM. In addition, it demonstrated great anti-invasive and anti-migratory effects. The findings of this study strongly suggest that the simultaneous inhibition of ROCK and HDACs holds significant potential as a promising therapeutic strategy in the advancement of cancer treatment.
Read full abstract