A novel approach for the stabilization of the Discontinuous Galerkin method based on the Dafermos entropy rate crition is presented. First, estimates for the maximal possible entropy dissipation rate of a weak solution are derived. Second, families of conservative Hilbert–Schmidt operators are identified to dissipate entropy. Steering these operators using the bounds on the entropy dissipation results in high-order accurate shock-capturing DG schemes for the one-dimensional Euler equations, satisfying the entropy rate criterion and an entropy inequality. Other testcases include the one-dimensional Buckley–Leverett equation.
Read full abstract