Abstract

At higher altitudes near space shuttles moving at hypersonic speed the air is excited to high temperatures. Then not only mechanical collisions are affecting the gas flow, but also chemical reactions have an impact on such hypersonic flows. In this work we insert chemical reactions, in form of dissociations and associations, in a model for a mixture of mono- and polyatomic (non-reacting) species. More general chemical reactions, e.g., bimolecular ones, can be obtained by instant combinations of the considered reactions. Polyatomicity is here modelled by a continuous internal energy variable and the evolution of the gas is described by a Boltzmann equation. In the Chapman-Enskog process—and related half-space problems—the linearized Boltzmann collision operator plays a central role. Here we extend some important properties of the linearized operator to the considered model with chemical reactions. A compactness result, that the linearized operator can be decomposed into a sum of a positive multiplication operator—the collision frequency—and a compact integral operator, is obtained. The terms of the integral operator are shown to be (at least) uniform limits of Hilbert-Schmidt integral operators and, thereby, compact operators. Self-adjointness of the linearized operator follows as a direct consequence. Also, bounds on—including coercivity of—the collision frequency is obtained for hard sphere, as well as hard potentials with cutoff, like models. As consequence, Fredholmness as well as the domain of the linearized operator are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.