Abstract

The linearized collision operator of the Boltzmann equation for single species can be written as a sum of a positive multiplication operator, the collision frequency, and a compact integral operator. This classical result has more recently, been extended to multi-component mixtures and polyatomic single species with the polyatomicity modeled by a discrete internal energy variable. In this work we prove compactness of the integral operator for polyatomic single species, with the polyatomicity modeled by a continuous internal energy variable, and the number of internal degrees of freedom greater or equal to two. The terms of the integral operator are shown to be, or be the uniform limit of, Hilbert-Schmidt integral operators. Self-adjointness of the linearized collision operator follows. Coercivity of the collision frequency are shown for hard-sphere like and hard potential with cut-off like models, implying Fredholmness of the linearized collision operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.