An investigation is conducted to characterize and quantify external effects in composite steel highway bridges under thermal loading. Based on the results of a literature review, including thermal and thermoelastic analyses as well as current design code provisions, a simple but realistic thermal loading is developed for winter and summer conditions for AASHTO load and resistance factor design (LRFD) Zone 3. Three cases of bearing orientation, representative of current design practice, are examined. Parametric studies are then conducted. Hypothetical bridges are designed for a range of different span lengths, section depths, widths, and skews. Each bridge model is tested under all three constraint cases and both winter and summer thermal loading. Variations in structural response with each parameter are plotted, and the relative influence of each parameter is discussed. Design equations to predict the observed displacements and restraint forces at the bearings are then developed by a systematic regression procedure. The applicability of these proposed design equations is demonstrated by examples.