Vegetable production in intensive protected agriculture systems has evolved due to its intensity and economic importance. Sensors are increasingly common for decision-making in crop management and control of environmental variables, obtaining optimal yields, such as estimating vegetation indices. Innovation and technological advances in unmanned vehicle platforms have improved spatial, spectral, and temporal resolution. However, in protected agriculture systems, the use is limited due to the assumption of having controlled environmental conditions for indeterminate vegetable production. Therefore, sequential monitoring of NDVI is proposed during the 2022 and 2023 agricultural cycles using the Green Seeker® sensor and agronomic variables. This has created a database to generate predictive models of development and yield as a function of nutrient status. The results obtained indicate high significance levels for the development and NDVI curves in all phenological stages; in contrast to the yield predictive models, this is due to the maximum values (close to one) recorded for NDVI inside the greenhouse in comparison to the yield prediction obtained from the 18th week of harvest. Evaluating the models between NDVI and agronomic variables is not an index that offers certainty in predicting yield in indeterminate crops in protected agriculture production systems. This is due to the constant optimal development in response to controlled environmental conditions, nutrient status, and water supply inside the greenhouse, without the sustainability of yield, which decreases in the final stages of production until production becomes economically unprofitable.
Read full abstract