Direct chemical vapor deposition growth of high-quality graphene on dielectric substrates is a great challenge. Graphene growth on dielectrics always suffers from the issues of a high nucleation density and poor quality. Herein, a premelted-substrate-promoted selective etching (PSE) strategy was proposed. The premelted substrate can promote charge transfer from the substrate to the nuclei near graphene domains, thus facilitating the reaction between the CO2 etchant and the nuclei. Consequently, the PSE strategy can realize selective etching of nuclei formed near graphene domains to evolve high-quality graphene with a uniform domain size of ∼1 μm and an ID/IG ratio of ∼0.13 on glass fiber, achieving the largest domain size and the lowest defect density in graphene grown on a noncatalytic substrate without metal assistance. The largely improved quality of graphene significantly increases the electrical conductivity by 3 times and improves the working life by 7 times when applied as an electric heater compared with that fabricated without the PSE strategy.
Read full abstract