Carbon-based composites have triggered tremendous attention in the development of high-efficiency microwave absorbers, due to their compatibility, light weight, and high microwave absorption. However, fabricating carbon-based absorbers with a strong absorption ability in a broad frequency range is challenging. Hence, a facile strategy was used to produce Co@C derived from a zeolitic imidazolate framework (ZIF)@ graphene. The Co@C@RGO composite was obtained by annealing the ZIF67/GO nanocomposite precursor at 650 °C in a nitrogen atmosphere. Due to the magnetic loss induced by the Co particles, the dielectric loss generated by the carbon skeletons and graphene, and the interfacial polarization between the components, the hierarchical composite exhibits superior electromagnetic (EM) wave absorption properties. The optimal reflection loss (RL) of the Co@C@ RGO composite can be up to −67.5 dB at 2.6 mm, and the effective bandwidth (≥−10 dB) is 5.4 GHz (10–15.4 GHz) with a thickness of 2 mm at 20 wt% loading. The dipolar polarization caused by graphene, as well as enhanced impedance matching, synergistic effect and interfacial effect among the components, increase the microwave absorption performance of the composite. This work may open a new path to use the Co@C@RGO composite with its high-efficiency EM wave properties as an absorber.
Read full abstract