ABSTRACTThe Troodos ophiolite Cyprus hosts the type locality for Cyprus-type, mafic volcanogenic massive sulfide (VMS) deposits. Regional soil geochemical data for Troodos are highly variable with the Solea graben, one of three regional graben structures on Cyprus, showing enrichment in Te and Se. Of the three VMS sampled within the Solea graben, Apliki exhibits the most significant enrichment in Se. Samples from the South Apliki Breccia Zone; a zone of hematite-rich breccia containing euhedral pyrite and chalcopyrite, contain up to 4953 and 3956 ppm Se in pyrite and chalcopyrite, respectively. Four paragenetic stages are identified at Apliki and different generations of pyrite are distinguishable using trace-element chemistry analysed via laser ablation inductively coupled plasma mass spectrometry. Results indicate stage I pyrite formed under reduced conditions at high temperatures >280°C and contains 182 ppm (n = 22 σ = 253) Se. Late stage III pyrite which is euhedral and overprints chalcopyrite and hematite is enriched in Se (averaging 1862 ppm; n = 23 σ = 1394). Sulfide dissolution and hematite formation displaced large amounts of Se as hematite cannot accommodate high concentrations of Se in its crystal structure. The mechanisms proposed to explain the pronounced change in redox are twofold. Fault movement leading to localized seawater ingress coupled with a decreasing magmatic flux that generated locally oxidizing conditions and promoted sulfide dissolution. A Se/S ratio of 9280 indicates a probable magmatic component for late stage III pyrite, which is suggested as a mechanism explaining the transition from oxidizing back to reduced conditions. This study highlights the significance of changes in redox which promote sulfide dissolution, mobilization and enrichment of Se.