According to the aerobic capacity model of the evolution of endothermy, high levels of basal/resting metabolic rate (BMR/RMR) underlying endothermy have evolved as a correlated response to selection for high rates of aerobic metabolism (V(O(2)max)). To test the model we studied metabolic, behavioural and morphological correlates of replicated selection on maximum body mass-corrected metabolism elicited by swimming (V(O(2)swim)) in male laboratory mice. While 10 generations of selection did not change body mass, it resulted in a 12% difference in V(O(2)swim) between mice of selected and control line types and significant, correlated responses in maximum metabolic rates elicited by exposure to cold in a helium-oxygen atmosphere (V(O(2)He)), and during forced running on a motorized treadmill (V(O(2)run)). Selected and control lines also significantly differed with respect to duration of running (a measure of stamina, t(run)), and the distance run to exhaustion (d(e)). However, the selection protocol did not result in elevated BMR and voluntary activity. Higher V(O(2)max) in selected animals was positively correlated with higher masses of gastrocnemius muscles and heart but not of other visceral organs (intestine, stomach, liver and kidneys). These findings provide a mechanistic explanation for the lack of correlation between basal and maximal metabolic rates in selected mice. Overall, our study does not support the assumptions of the aerobic capacity model for the evolution of endothermy.
Read full abstract