We study the positivity properties of the leading Regge trajectory in higher-dimensional, unitary, conformal field theories (CFTs). These conditions correspond to higher spin generalizations of the averaged null energy condition (ANEC). By studying higher spin ANEC, we will derive new bounds on the dimensions of charged, spinning operators and prove that if the Hofman-Maldacena bounds are saturated, then the theory has a higher spin symmetry. We also derive new, general bounds on CFTs, with an emphasis on theories whose spectrum is close to that of a generalized free field theory. As an example, we consider the Ising CFT and show how the OPE structure of the leading Regge trajectory is constrained by causality. Finally, we use the analytic bootstrap to perform additional checks, in a large class of CFTs, that higher spin ANEC is obeyed at large and finite spin. In the process, we calculate corrections to large spin OPE coefficients to one-loop and higher in holographic CFTs.