Abstract
In this note we consider the problem of extracting the corrections to CFT data induced by the exchange of a primary operator and its descendents in the crossed channel. We show how those corrections which are analytic in spin can be systematically extracted from crossing kernels. To this end, we underline a connection between: Wilson polynomials (which naturally appear when considering the crossing kernels given recently in arXiv:1804.09334), the spectral integral in the conformal partial wave expansion, and Wilson functions. Using this connection, we determine closed form expressions for the OPE data when the external operators in 4pt correlation functions have spins J1-J2-0-0, in particular the anomalous dimensions of double-twist operators of the type {left[{mathcal{O}}_{J_1}{mathcal{O}}_{J_2}right]}_{n,ell } in d dimensions and for both leading (n = 0) and sub-leading (n ≠ 0) twist. The OPE data are expressed in terms of Wilson functions, which naturally appear as a spectral integral of a Wilson polynomial. As a consequence, our expressions are manifestly analytic in spin and are valid up to finite spin. We present some applications to CFTs with slightly broken higher-spin symmetry. The Mellin Barnes integral representation for 6j symbols of the conformal group in general d and its relation with the crossing kernels are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.