Biomass-derived biocrude is gaining greater recognition from people in general as an alternative fuel source to traditional fossil fuels. Worldwide, a great deal of research is being done to develop fuels made from sustainable biomass in order to replace the current conventional energy sources. Waste sludge has been thought of as a viable raw biomass source because of its accessibility, affordability, high lignin content, and higher heating value. Additionally, considering sludge contains a high proportion of moisture and water acts as a catalyst during the hydrothermal liquefaction (HTL) process, it is the best choice for thermochemical conversion. From the ultimate component value ranges obtained from elemental analysis, it can be demonstrated that the C, H, and higher heating value (HHV) of petrocrude are approximately 8.78%, 23.5%, and 10.66% higher than those of biofuel. According to the overall analysis, co-liquefaction of waste vegetable oil and swine manure can result in 87.97% bio-oil at 340°C. The temperature, retention period, inclusion of catalysts, and use of solvents, however, can all affect this proportion. To support this illustration, it has been assessed from the study that municipal wet sewage sludge can produce an HHV of 28.52MJ/kg when water is used as the solvent. However, 34.14MJ/kg, or 16.5% more than the previous one, can be produced for the same amount of biomass, when the mixture of water and methanol serves as the solvents. This review article highlights an array of waste sludge categories, their chemical properties, and their conversion through the HTL process. It also features a Van Krevlen diagram with a graphical representation of essential operating parameters. This review research illustrates one of the best strategies for producing biofuel in which waste sludge can be used as raw material through the HTL conversion process, considering the prospective mass commercial production of biocrude oil.
Read full abstract