Abstract
AbstractBahiagrass (Paspalum notatum Flügge) is a warm‐season grass where high lignin content limits its forage quality, negatively affecting animal performance. To create a new breeding method by genome editing, isolation and characterization of lignin biosynthesis genes and identification of their molecular relationships are essential. The caffeic acid O‐methyltransferase (COMT) and cinnamyl alcohol dehydrogenase (CAD) cDNA clones were isolated from bahiagrass, and their protein sequences showed high similarity to other C4 monocot species through phylogenetic analysis. Gene expression analysis of phenylalanine ammonia‐lyase (PAL), COMT and CAD, involved in crucial stages of lignin biosynthesis and lignin content, was conducted at different plant developmental stages. The highest gene expression levels of these genes were observed in the vegetative (V) and early reproductive stages, while the lignin content increased until the middle reproductive stage and remained constant thereafter. Additionally, to further understand the molecular relationships in lignin biosynthesis, the effect of CAD downregulation was analyzed in transgenic bahiagrass lines introduced with sorghum CAD antisense and RNAi vector obtained from a previous report. This led to a reduced lignin content and affected the expression of PAL and COMT working upstream of CAD. In the V stage, PAL expression was lower in transgenic lines compared to wild type (WT), while COMT expression showed no significant differences. However, PAL and COMT expression of transgenic lines in the middle reproductive stage (R2) was significantly higher than in the WT. These findings suggest that the downregulation of CAD gene expression affects PAL and COMT expression and induces a feedback system in the R2 stage. Lignin content influenced the phenotype of the transgenic plants with significantly reduced lignin, exhibiting a dwarf phenotype with shorter plant heights. The findings of this study can be applied to genome editing for the development of practical new breeding materials with improved digestibility in bahiagrass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.