AimsTo investigate the potential of imDCs with high expression of HO-1 in preventing or delaying the onset of Type 1 diabetes mellitus (T1DM) in non-obese diabetic (NOD) mice. Materials and methodsThe phenotypic features of DCs in each group were assessed using flow cytometry. Western blot analysis was used to confirm the high expression of HO-1 in imDCs induced with CoPP. Additionally, flow cytometry was used to evaluate the suppressive capacity of CoPP-induced imDCs on splenic lymphocyte proliferation. Finally, the preventive effect of CoPP-induced imDCs was tested in NOD mice. Key findingsCompared to imDCs, CoPP-induced imDCs exhibited a reduced mean fluorescence intensity (MFI) of the co-stimulatory molecule CD80 on their surface (P < 0.05) and significantly increased HO-1 protein expression (P < 0.05). Following LPS stimulation, the MFI of co-stimulatory molecules CD80 and CD86 on the surface of CoPP-induced imDCs remained at a lower level (P < 0.05). Furthermore, there was a reduced proliferation rate of lymphocytes stimulated with anti-CD3/28 antibodies. The adoptive transfer of CoPP-imDCs significantly reduced the incidence of T1DM (16.66 % vs. control group: 66.67 %, P = 0.004). Furthermore, at 15 weeks of age, the insulitis score was also decreased in the CoPP-induced imDC treatment group (P < 0.05). There were no significant differences in serum insulin levels among all groups. SignificanceImDCs induced with CoPP and exhibiting high expression of HO-1 demonstrate a robust ability to inhibit immune responses and effectively reduce the onset of diabetes in NOD mice. This finding suggests that CoPP-induced imDCs could potentially serve as a promising treatment strategy for T1DM.