China faces a serious challenge with water pollution posed by potentially toxic elements (PTEs). Comprehensive and reliable environmental risk assessment is paramount for precise pollution prevention and control. Previous studies generally focused on a single environmental compartment within small regions, and the uncertainty in risk calculation is not fully considered. This study revealed the current exposure status of 11 PTEs in surface water and sediment across China using previously reported concentration data in 301 well-screened articles. Ecological and human health risks were evaluated and the uncertainty related to calculation parameters and exposure dataset were quantified. PTEs of high concern were further identified. Results showed Mn and Zn had the highest concentration levels, while Hg and Cd had the lowest concentrations in both surface water and sediment. Risk assessment of individual PTE showed that high-risk PTEs varied by risk receptors and environmental compartments. Nationwide, the probability of aquatic organisms being affected by Mn, Zn, Cu, and As in surface water exceeded 10 %. In sediment, Cd and Hg exhibited high and considerable risk, respectively. As was identified as the major PTE threatening human health as its carcinogenic risk was 1.45 × 10−4 through direct ingestion. Combined risk assessment showed the PTE mixture in surface water and sediment posed medium and high ecological risk with the risk quotient and potential ecological risk index of 1.76 and 558.36, respectively. Adverse health effects through incidental ingestion and dermal contact during swimming were negligible. This study provides a nationwide risk assessment of PTEs in China's aquatic environment and the robustness is verified, which can serve as a practical basis for policymakers to guide the early warning and precise management of water pollution.
Read full abstract