The anthropogenic pollution of lake ecosystems by human activities (e.g., mining industries) is recognized as a serious issue. The Osisko urban lake located in Rouyn-Noranda (Quebec, Canada) was used partially as a waste disposal facility for many decades, causing a heavy pollution. The main undertakings of this study are (i) assessing the mineralogical and geochemical properties of lake Osisko sediments, and (ii) studying the pollution that occurred within lake water due to the sediments’ reactivity. Water and sediments across the lake were collected in different sensitive locations. Within the sediment samples, two parts were distinguished: a small layer of black vase over grey sediments. The black vase resembled organic matter while the gray sediment seemed close to clean lake sediments. The collected samples were characterized for their physical (particle size distribution, specific gravity and specific surface area), chemical (minor and major elements as well as total sulfur and carbon) and mineralogical (X-ray diffraction and scanning electron microscope) properties. Additionally, the reactivity of sediments was studied using weathering cells to quantify chemical species leaching and their releasing rates. The results showed that the vase was the only contaminated part with high concentrations of sulfur and metals such as copper, zinc and iron. Geochemical data showed that the composite sample and the vase potentially cause contaminated acid drainage if they are exposed to atmospheric conditions. Indeed, the pH values of the leachates from both samples were between 4 and 6, while those corresponding to sediments remained around circumneutral values. Quantitatively, the contaminant release from the tested samples was variable. Indeed, the Fe cumulative concentrations were around 200, 80 and 20 mg/kg for the vase, composite and sediment samples, respectively. Similarly, the Zn cumulative concentrations were around 4500, 4200, and below the detection limit for vase, composite and sediment samples, respectively. The same tendency was observed for Cu, S, and Fe. Thus, sediments within Osisko lake present a risk for water contamination if they are resuspended or dredged out of the lake. Consequently, they should be stabilized before their disposal. The samples’ high Cu contents also offer the possibility of their reprocessing.
Read full abstract