Abstract

AbstractSulfides play a crucial role in the distribution of chalcophile elements in the Earth's mantle. In this work, combined petrography and mineral chemistry of sulfide and diopside in a pyroxenite from an ultramafic–alkaline–carbonatite complex of NE India, related to the Kerguelen plume, was carried out and a considerably high sulfur concentration in the parental melt of the pyroxenite was obtained. Two types of sulfide, with similar compositions, were detected in pyroxenite: Type A are multifaceted polygons, elliptical and spherical in shape, occurring as poikilitic inclusions in diopside; and Type B are intergranular sulfides of irregular shapes in silicate grains. These sulfides are often partially replaced by magnetite. Mineral chemistry suggests that both types of sulfide are products of re-equilibration of high-temperature monosulfide solid solution and represent a low-temperature (c. 400°C) mineral phase of the Cu–Fe–S system. Petrographical features suggest that the sulfides were separated as immiscible melt droplets at the time of sulfur saturation and fractionation of diopside in the coexisting silicate magma. Our study implicates that both high- and low-temperature sulfides can form in the plume-associated ultramafic rocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call