The cells of origin of a neocortical cholinergic afferent projection have been identified by anterograde and retrograde methods in the rat. Horseradish peroxidase injected into neocortex labelled large, acetylcholinesterase-rich neurons in the ventromedial extremity of the globus pallidus. This same group of neurons underwent retrograde degeneration following cortical ablations. The region in which cell depletion occurred also showed significant decreases in the activities of choline acetyltransferase and acetylcholinesterase. Discrete electrolytic and kainic acid lesions restricted to the medial part of the globus pallidus each resulted in significant depletions of neocortical choline acetyltransferase and acetylcholinesterase. Hemitransections caudal to this cell group did not result in such depletions. Taken together these observations suggest that the acetylcholinesterase-rich neurons lying in the ventromedial extremity of the globus pallidus, as mapped in this study, constitute the origin of a major subcortical cholinergic projection to the neocortex. The utility of acetylcholinesterase histochemistry in animals pretreated with di-isopropylphosphorofluoridate in identifying cholinergic neurons is discussed in the light of this example; specifically, it is proposed that high acetylcholinesterase activity 4–8 h after this pretreatment is a necessary, but not sufficient, criterion for the identification of cholinergic perikarya. The neurons in question appear to be homologous to the nucleus basalis of the substantia innominata of primates, and are thus termed ‘nucleus basalis magnocellularis’ in the rat. No evidence was obtained to support the hypothesis that nucleus of the diagonal band projects to neocortex. However, striking similarities in size and acetylcholinesterase activity were observed among the putative cholinergic perikarya of the nucleus basalis magnocellularis, the nucleus of the diagonal band, and the medial septal nucleus. Kainic acid lesions of the neocortex produced uniform and complete destruction of neuronal perikarya. These lesions decreased neocortical glutamic acid decar☐ylase activity, suggesting that there are GABAergic perikarya in the neocortex. However, the same lesions did not affect neocortical choline acetyltransferase. This observation suggests that there are no cholinergic perikarya in the neocortex, a conclusion that is consistent with the absence of intensely acetylcholinesterase-reactive neurons in the neocortex.
Read full abstract