This study focuses on the impact of genetic improvement of seed yield plasticity in soybean (Glycine max L.) in high-yielding environments (between 4000 kg ha-1 and 7000 kg ha-1) of Central Argentina. The association between seed yield and its plasticity was analysed with (i) a historical collection of 148 genotypes released to the market between 1980 and 2013 and (ii) 165 currently available commercial genotypes. The impact on seed yield of soybean breeding programmes in Argentina reveals higher genetic progress of the lowest (1.7% year-1) rather than the highest yielding genotypes (0.9% year-1). At the same time, seed yield plasticity has been exploited indirectly. Increased seed yield plasticity over time contributed to a reduction in genotypic seed yield variability (P<0.0001). Seed yield plasticity was related to seed yield in high-yielding environments (>5500 kg ha-1). Plastic genotypes showed a positive correlation with the length of the seed-filling period (r=0.5), suggesting that a longer seed-filling period could be required to maximize seed yield plasticity under high-yielding environments. To increase productivity, clarifying the value of plasticity will aid genotype selection for target environments, as well as the development of high-yielding cultivars specifically adapted to high-yielding conditions.
Read full abstract