Capture and immobilization of 137Cs is urgent for radioactive contamination remediation and spent fuel treatment. Herein, an effective all-in-one treatment method to simultaneously adsorb and immobilize Cs+ without high-temperature treatment is proposed. According to the strategy of incorporating high-valency metal ions into molybdates to increase the material stability and affinity towards radionuclides, layered HMMoO6·nH2O (M = Ta (1), Nb (2)) are prepared. Both materials exhibit excellent acid resistance (even 15 mol/L HNO3). They maintain remarkable adsorption capacity for Cs+ in 1 mol/L HNO3 solutions and can selectively capture Cs+ under excessive competitive ions. Furthermore, they show successful cleanup for actual 137Cs-liquid-wastes generated during industrial production. In particular, adsorbed Cs+ can be firmly immobilized in interlayer spaces of materials due to the highly stable anionic framework. The removal mechanism is attributed to ion exchange between Cs+ and interlayer H+ by multiple characterizations. Study of the structure-function relationship shows that the occurrence of Cs+ ion exchange is closely related to plate-like layered structure. This work develops an efficient all-in-one treatment method for capturing and immobilizing radiocesium by ultra-stable inorganic solid acid materials with low energy consumption and high safety for radionuclide remediation.
Read full abstract