Abstract

The development of facile methods for constructing highly active, cost-effective catalysts that meet ampere-level current density and durability requirements for an oxygen evolution reaction is crucial. Herein, a general topochemical transformation strategy is posited: M-Co9S8 single-atom catalysts (SACs) are directly converted into M-CoOOH-TT (M = W, Mo, Mn, V) pair-sites catalysts under the role of incorporating of atomically dispersed high-valence metals modulators through potential cycling. Furthermore, in situ X-ray absorption fine structure spectroscopy is used to track the dynamic topochemical transformation process at the atomic level. The W-Co9S8 breaks through the low overpotential of 160mV at 10mAcm-2. A series of pair-site catalysts exhibit a large current density of approaching 1760mAcm-2 at 1.68V vs reversible hydrogen electrode (RHE) in alkaline water oxidation and achieve a ≈240-fold enhancement in the normalized intrinsic activity compare to that reported CoOOH, and sustainable stability of 1000h. Moreover, the O─O bond formation is confirmed via a two-site mechanism, supported by in situ synchrotron radiation infrared and density functional theory (DFT) simulations, which breaks the limit of adsorption-energy scaling relationship on conventional single-site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call