Separators are applied to segregate cathode and anode, and provide ion transport channels in lithium-ion batteries (LIBs). Nevertheless, present commercial polyolefin separators represent high thermal shrinkage and inferior electrolyte wettability, seriously limiting wider development of LIBs. In this work, we prepared zirconia (ZrO2) nanolayer encapsulated polyimide (PI) nanofiber compound separator through in-situ polar adsorption and hydrolysis strategy. The obtained PI/ZrO2 compound separator has superior thermal stability, electrolyte wettability and flame retardance in comparison with polypropylene (PP) separator. The shrinkage ratio of prepared PI/ZrO2 compound separator is 0 even at 300 °C, while the PP separator significantly shrank at 160 °C. Furthermore, the ionic conductivity of PI/ZrO2 separator reaches up to 1.32 mS cm−1, far higher than 0.34 mS cm−1 of PP separator. Besides, the coin batteries of LiNi0.8Co0.1Mn0.1O2 (NCM811)/electrolyte-separator/lithium (Li) assembled with PI/ZrO2 compound separator exhibit enhanced rate performance, high discharge capacity retention rate of 88.3% after 100 cycles at 1C and excellent battery safety performance even at 140 °C. Thus, combined with its advantages, such as preparation, thermostability, electrolyte wettability, electrochemical property and safety, the PI/ZrO2 compound separator exhibits promising prospect in the application of commercial LIBs.
Read full abstract