AbstractSolar selective coating with good thermal stability is the primary requirement for a concentrated solar power (CSP) plant to function with better photothermal efficiency. In recent years, ultra‐high‐temperature ceramic‐based coatings have been explored as potential materials for solar selective coatings. In this context, NbB2/Nb(BN)/Al2O3 tandem absorber coating was designed to be fabricated on a stainless‐steel substrate by the radio frequency magnetron sputtering of spark plasma sintered ceramic target. In the bulk form, the NbB2 ceramic exhibits high solar absorptance (α = 0.756) and thermal emissivity (ε = 0.43), whereas the amorphous single NbB2 coating exhibits α/ε = 0.716/0.13. Reactive sputtering of NbB2 in nitrogen produced a semi‐transparent coating with an optical bandgap of ∼2.80 eV and was used as the secondary absorber layer. Raman and X‐ray photoelectron spectroscopy analyses reveal mild oxygen incorporation in the absorber layers. The developed SS/NbB2/Nb(BNO)/Al2O3 tandem absorber exhibits a good solar absorptance of 0.950 and a moderate thermal emissivity of 0.15 at room temperature. The coatings exhibited good thermal stability when heated in vacuum for 5 h up to 700°C, and the selectivity (α/ε) remains above 6. The present work shows the possibility of exploring NbB2‐based tandem absorber coatings for CSP applications.
Read full abstract