Abstract
Space cooling and heating consume a large proportion of global energy, so passive thermal management materials (i.e., without energy input), especially dual-mode materials including cooling and heating bifunctions, are becoming more and more attractive in many areas. Herein, a function-switchable Janus membrane between cooling and heating consisting of a multilayer structure of polyvinylidene fluoride nanofiber/zinc oxide nanosheet/carbon nanotube/Ag nanowire/polydimethylsiloxane was fabricated for comprehensive thermal management applications. In the cooling mode, the high thermal radiation emissivity (89.2%) and sunlight reflectivity (90.6%) of the Janus membrane resulted in huge temperature drops of 8.2-12.6, 9.0-14.0, and 10.9 °C for a substrate, a closed space, and a semiclosed space, respectively. When switching to the heating mode, temperature rises of 3.8-4.6, 4.0-4.8, and 12.5 °C for the substrate, closed space, and semiclosed space, respectively, were achieved owing to the high thermal radiation reflectivity (89.5%) and sunlight absorptivity (74.1%) of the membrane. Besides, the Janus membrane has outstanding comprehensive properties of the membrane, including infrared camouflaging/disguising, electromagnetic shielding (53.1 dB), solvent tolerance, waterproof properties, and high flexibility, which endow the membrane with promising application prospects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.