Background: Flaxseed mucilage (FSM) is one of the healthy components of flaxseed. FSM is an example of a material that can be used in the food, cosmetic, and pharmaceutical industries due to its rheological properties. FSM consists mainly of two polysaccharides, arabinoxylan, and rhamnogalacturonan I, and it also contains protein components and minerals. The prospect of using FSM in food is due to its gelling, water binding, emulsifying, and foaming properties. In addition, valuable natural sources of phenolic compounds such as lignans, phenolic acids, flavonoids, phenylpropanoids, and tannins are partially extracted from flaxseed in FSM. These antioxidant components have pharmacological properties, including anti-diabetic, anti-hypertensive, immunomodulatory, anti-inflammatory and neuroprotective properties. A combination of FSM and lactobacilli in dairy foods can improve their functional properties. This study aimed to develop dairy products by adding of FSM and using two lactic acid bacteria (LAB). FSM (0.2%) was used as an ingredient to improve both the texture and antioxidant properties of the product. Methods: Skim milk was fermented with 0.2% flaxseed mucilage using Lactobacillus delbrueckii subs. bulgaricus and the probiotic Lactiplantibacillus plantarum AG9. The finished fermented milk products were stored at 4 °C for 14 days. Quantitative chemical, textural, and antioxidant analyses were carried out. Results: Adding 0.2% FSM to the dairy product stimulated the synthesis of lactic acid. FSM increased the viscosity and water-holding capacity of L. bulgaricus or L. bulgaricus/L. plantarum AG9 fermented milk products. Combining these starter strains with FSM promoted the formation of a hard, elastic, resilient casein matrix in the product. When only L. plantarum AG9 was used for the fermentation, the dairy product had a high syneresis and a low viscosity and firmness; such a product is inferior in textural characteristics to the variant with commercial L. bulgaricus. The addition of FSM improved the textural properties of this variant. The use of L. plantarum AG9 and FSM makes it possible to obtain a fermented milk product with the highest content of polyphenolic compounds, which have the highest antioxidant properties and stimulate lipase and α-glucosidase inhibitor synthesis. Combining of L. bulgaricus and L. plantarum AG9 in the starter (20% of the total mass of the starter) and adding of 0.2% FSM is the optimal combination for obtaining a dairy product with high textural and antioxidant properties. Conclusions: The physicochemical properties (viscosity, syneresis, water holding capacity, texture) and antioxidant properties of fermented milk were improved. In the future, as part of the work to investigate the functional properties of dairy products with FSM, studies will be conducted using in in vivo models.
Read full abstract