The cooperativity in artificial self-assembling systems can be enhanced to expand their applications and redesign their properties. Recently, chiral molecules have garnered renewed attention due to their potential as highly efficient spin filters through the chiral-induced spin selectivity (CISS) effect. However, the potential of asymmetric building blocks based on chiral perylene diimides (PDIs) self-assembled materials to generate a spin-polarized current is still not widely acknowledged. In this work, we have demonstrated that nanofibers derived from "asymmetric PDIs" molecules have been found to exhibit promising spin-filtering property and the amplification of spin polarization at room temperature. Also, the exploration of chiral amplification and correlating it with the amplification of spin polarization have been reported for the first time through this work. These findings underscore the significance of self-assembled materials in the realm of spintronics, as they offer fascinating platforms with evolving structure-property relationship. It also provides the feasible possibility of enhancing the CISS-based spintronic devices that can accomplish controllability and high spin-filtering efficiency simultaneously.