The introduction of visible light communication (VLC) technology could increase the capacity of existing wireless communication systems towards 6G networks. In practice, VLC can make good use of lighting system infrastructures to transmit data using light fidelity (Li-Fi). The use of semiconductor light sources, including light-emitting diodes (LEDs) and laser diodes (LDs) are essential to VLC technology because these devices are energy-efficient and have long lifespans. To achieve high-speed VLC links, various technologies have been utilized, including injection locking. Optical injection locking (OIL) is an optical frequency and phase synchronization technique that has been implemented in semiconductor laser systems for performance enhancement. High-performance optoelectronic devices with narrow linewidth, wide tunable emission, large modulation bandwidth and high data transmission rates are desired for advanced VLC. Thus, the features of OIL could be promising for building high-performance VLC systems. In this paper, we present a comprehensive review of the implementation of the injection-locking technique in optical communication systems. The enhancement of characteristics through OIL is elucidated. The applications of OIL in VLC systems are discussed. The prospects of OIL for future VLC systems are evaluated.