The technique of loading edge cracks by edge impact (LECEI) for generating high rates of crack tip shear (mode-II) loading is presented. The LECEI-technique in combination with a gas gun for accelerating the impactor is used to study the high rate shear failure behaviour of three types of materials. Epoxy resin (Araldite B) shows failure by tensile cracks up to the highest experimentally achievable loading rate; steel (high strength maraging steel X2 NiCoMo 18 9 5) shows a failure mode transition: at low rates failure occurs by tensile cracks, at higher rates, above a certain limit velocity, failure by adiabatic shear bands is observed; aluminum alloy (Al 7075) shows failure due to shear band processes in the high rate regime, but this failure mode is observed over the entire range of lower loading rates, even down to quasi-static conditions. Characteristics of the failure modes are presented. When transitions are observed in the failure process from tensile cracks to shear bands the limit velocity for failure mode transition depends on the bluntness of the starter crack the failure is initiated from: The larger the bluntness of the starter crack the higher the critical limit velocity for failure mode transition. The data indicate that adiabatic shear bands require and absorb more energy for propagation than tensile cracks. Aspects of the energy balance controlling mode-II instability processes in general are considered. Effects very different than for the mode-I instability process are observed: When failure by a tensile crack occurs under mode-II initiation conditions, a notch is formed between the initiated kinked crack and the original starter crack, and, at this notch a compressive stress concentration builds up. The energy for building up this stress concentration field is not available for propagation of the initiated kinked crack. The energy density of a mode-II crack tip stress field, however, when compared to an equivalent mode-I crack tip field, is considerably larger, and, consequently, the remaining driving energy for any mode-II initiated failure process, nevertheless, is higher than for the case of equivalent mode-I initiation conditions. Furthermore, mode-II crack tip plastic zones are considerably larger than equivalent mode-I crack tip plastic zones. Consequently, validity conditions for linear-elastic or small scale yielding failure behaviour are harder to fulfill and possibilities for the activation of nonlinear high energy ductile type failure processes are enhanced. Speculations on how these effects might favour failure by high energy processes in general and by shear bands processes in particular for conditions of high rate shear mode-II loading are presented.