Abstract
This paper considers the performance of (j, k)-regular low-density parity-check (LDPC) codes with message-passing (MP) decoding algorithms in the high-rate regime. In particular, we derive the high-rate scaling law for MP decoding of LDPC codes on the binary erasure channel (BEC) and the q-ary symmetric channel (q-SC). For the BEC and a fixed j, the density evolution (DE) threshold of iterative decoding scales like Θ(k <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> ) and the critical stopping ratio scales like Θ(k <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-j/(j-2)</sup> ). For the q-SC and a fixed j, the DE threshold of verification decoding depends on the details of the decoder and scales like Θ(k <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> ) for one decoder. Using the fact that coding over large finite alphabets is very similar to coding over the real numbers, the analysis of verification decoding is also extended to the compressed sensing (CS) of strictly sparse signals. A DE-based approach is used to analyze the CS systems with randomized-reconstruction guarantees. This leads to the result that strictly sparse signals can be reconstructed efficiently with high probability using a constant oversampling ratio (i.e., when the number of measurements scales linearly with the sparsity of the signal). A stopping-set-based approach is also used to get stronger (e.g., uniform-in-probability) reconstruction guarantees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.