High-power broad-area diode lasers are the most efficient light sources, with 90-μm stripe GaAs-based 940-980 nm single emitters delivering > 10 W optical output at a power conversion efficiency η <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</sub> (10 W) > 65%. A review of efforts to increase η <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</sub> is presented here and we show that for well-optimized structures, the residual losses are dominated by the <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> -side waveguide and nonideal internal quantum efficiency η <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> . The challenge in measuring efficiency to sufficient precision is also discussed. We show that η <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</sub> can most directly be improved using low heat sink temperature T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">HS</sub> with η <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</sub> (10 W) reaching > 70% at <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">HS</sub> = -50 °C. In contrast, increases in η <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</sub> at T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">HS</sub> = 25 °C require improvements in both material quality and design, with growth studies targeting increased η <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> and reduced threshold current and design studies seeking to mitigate the impact of the <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> -side waveguide. “Extreme, double asymmetric” (EDAS) designs are shown to substantially reduce <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> -side losses, at the penalty of increased threshold current. The benefit of EDAS designs is shown here using diode lasers with 30-μm stripes, (in development as high beam quality sources for material processing). Efficiency increases of ~ 10% relative to conventional designs are demonstrated at high powers.