Understanding the ultra-fast dynamics of ferroelectric materials is essential for advancing the development of next-generation high speed electronic and photonic devices. Here, the ultrafast piezoelectric response of cobalt-substituted BiFeO3 (BiFe1-xCoxO3) with x = 0.15, consisting of morphotropic phase boundary of monoclinic MC and MA –type phases is investigated. The real-time piezoelectric response in (001)-oriented BiFe0.85Co0.15O3 (BFCO) epitaxial thin film was monitored using the time-resolved X-ray microdiffraction technique under an applied electric field with pulse widths 70 ns and 100 ns. The BFCO thin film yielded a high piezoelectric strain of approximately 0.53 % along [001] direction, with a giant c/a ratio (∼ 1.26) at an electric field of 1.3 MV/cm and a pulse width of 100 ns, with a piezoelectric coefficient of 40 pm/V. This finding is an important step towards the development of a high performance lead-free piezoelectric material for ultrafast operations in advanced technological applications.
Read full abstract