Abstract

The lead-free piezoelectric ceramics used in piezoelectric actuators have attracted extensive attention owing to their substantial electric-field-induced strain. In this study, The (1-x)Bi0.5(Na0.41K0.09)TiO3-xSr(Hf0.5Sb0.4)O3 (BNKT-xSHS) piezoelectric ceramics were synthesized using the conventional solid-state reaction method. The impact of SHS substitution on the microstructure and electrical properties was systematically explored. Among them, the BNKT-0.015SHS sample, featuring ergodic relaxor states, demonstrates a high piezoelectric strain coefficient (d33*) of 785 p.m./V under a low electric field of 50 kV/cm(Strain = 0.392 %). It exhibits a repeatable strain value of 0.47 % under an 80 kV/cm electric field(d33* = 590 p.m./V). Moreover, the strain values remain around 0.4 % between room temperature and 100 °C, with variations within 90 %. The heightened repeatable strain response is considered to be linked to the electric field-induced reversible phase transition occurring within the ergodic relaxor state. The higher strain temperature stability is ascribed to the coexistence of quadrilateral polar nanoregions and rhombic polydomain nanoregions. This study provides an effective example for achieving significant strain responses, presenting a feasible candidate material for applications in piezoelectric actuators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.