A superradiant FEL in the THz (3 THz) region is currently operating at Ariel University. It is based on the novel ORGAD accelerator, which is a hybrid linear RF photo-cathode 6 MeV electron gun. The hybrid term stands for its unique standing wave (SW)—traveling wave (TW) structure. The undulator generates spontaneous superradiance, which corresponds to spontaneous emission when the electron bunch duration is shorter than the radiated frequency, resulting in a much higher photon yield. However, the efficiency of this scheme is still quite low. In order to achieve higher emission (by improved efficiency), we intend to implement a new and promising radiative interaction scheme: tapering-enhanced superradiance (TES). This particular undulator design employs a tapered (amplitude) undulator in the zero-slippage condition to obtain a significantly more powerful and efficient THz radiation source. At the current stage, the scheme is designed for emission at approximately 0.5 THz. The design and start-to-end simulations demonstrate significant enhancement of superradiant energy and extraction efficiency using this method compared to a reference uniform case.
Read full abstract