Abstract

High energy photons can be generated via inverse Compton scattering (ICS) in the collision between energetic electrons and intense laser pulse. The development of laser plasma accelerators promises compact and all-optical gamma-ray sources by colliding the electrons from laser wakefield accelerators to its high-power driving pulse reflected by a plasma mirror. However, the law of optical focusing hinders realization of both high photon yield and monochromatic spectrum in this scenario. We propose an azimuthal spatial-temporal convertor that decouples the focal field strength from laser spot size using helical parabolic geometry. It decomposes the driving laser beam into a pulse train of almost identical divergence angle and focal depth, creating synchronized ICS in the optimized linear regime. The scheme resolves the dilemma between high efficiency and narrow energy spread, facilitating the generation of monochromatic gamma-ray using high power lasers beyond relativistic field strengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.