Efficient and stable catalysis has always been the core concept of enzyme catalysis in industrial processes for manufacturing. Here, we constructed molecular enrichment accelerators to synergistically enhance enzyme activity and stability by assembling enzyme surface grafted polymer and cyclodextrin. At 40 °C, the enzyme activity of CalB-PNIPAM212/β-CD was 2.9 times that of CalB-PNIPAM212. The enzyme activity of CalB-PNIPAM428/γ-CD had reached 1.61 times that of CalB. At the same time, the stability of CalB-PNIPAM212/β-CD and CalB-PNIPAM428/γ-CD are slightly better than that of CalB under high temperature, organic solution and extreme pH conditions. The synergistic increase in activity and stability of the lipase-polymer assembly was achieved due to the structure of assembly, in which the role of cyclodextrin could enrich substrate affecting molecular diffusion. In addition, the lipase-polymer assembly proved to be an efficient catalyst for biodiesel synthesis, with a biodiesel conversion 1.4 times that of CalB at 60 °C. Therefore, this simple and low-cost lipase-polymer assembly provides new possibilities for the construction of high-efficiency industrial biocatalytic catalysts.
Read full abstract