Naga chilli (Capsicum chinense Jacq.) have garnered significant attention due to the plant's possible health benefits and variety of phytochemical components. Utilizing cutting-edge analytical techniques such as gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC) in conjunction with bioautography, this study conducts a thorough phytochemical profiling and biological activity assessment of the Naga chilli plant. An in silico docking study was performed for all the bioactive compounds identified through GC-MS against dihydrofolate reductase, a critical enzyme for bacterial survival. Many important components were identified and quantified with the help of subsequent GC-MS and HPTLC analysis. Among them, capsaicinoids were found to be the most prevalent. GC-MS results showed nonadecane (21.28%), 1-dimethyl(phenyl)silyloxypentane (14.53%), capsaicin (13.55%) and 2-pentanone, 4-hydroxy-4-methyl- (11.42%) were the most prevalent. HPTLC report showed capsaicin was 0.833 mg/g of fresh weight of Naga chilli. This study showed good docking scores for some of the constituents, particularly capsaicin, indicating that this plant is a good candidate for antimicrobial activity. This activity of the extract confirms the docking results, which needs to be in focus for further antimicrobial drug development.
Read full abstract