Titanium alloys find extensive applications in aviation, maritime, and chemical engineering applications. Nonetheless, these alloys encounter significant challenges during the conventional forging process, which include high deformation resistance, limited processing temperature ranges, and inhomogeneous microstructure. Isothermal forging, as a near-net-shape forming technique, can alleviate the microstructural inhomogeneity caused by deformation dead zones in conventional forging, thus enabling the direct production of complex shapes. This process enhances the overall performance and utilization of materials while reducing manufacturing costs. This paper comprehensively reviews how isothermal near-net-shape forging process parameters influence the intricate microstructure and essential properties of titanium alloys. The unique properties of isothermal forging applied to high-performance titanium alloys are also discussed in depth, and the intricate interplay between process parameters and the microstructure and properties of recoloration is clarified. That is to say, temperature is a vital element influencing the phases and microstructure of titanium alloys during the forming process. Grain size, microstructural homogeneity, and phase transformation are influenced by the strain rate, thereby affecting the plasticity, fracture toughness, and strength of titanium alloys. The extent of deformation significantly governs the grain size, the thickness of secondary α phase, dynamic recrystallization, and primary α phase. Cooling rate affects the grain size and precipitates, contributing to grain refinement. The frequency of isothermal forging affects the grain refinement and microstructural uniformity of titanium alloys. Finally, this paper summarizes the scientific questions that remain unresolved in this field and outlines future research directions to promote the further development of isothermal near-net-shape forging processes and facilitate the broader industrial applications of high-performance titanium alloys and other difficult-to-form alloys.
Read full abstract