In this paper, we describe methods to verify the adequacy and accuracy of Lagrangian particles from a Lagrangian model to reproduce the concentrations of a passive tracer from an Eulerian-model in river plumes. The modelling simulates plumes from two major rivers discharging in the Great Barrier Reef (GBR), Australia, under real-world scenarios. The study has been a part of a major project to aid in the protection of the GBR system from the impacts of extreme events and climate change. We employ the Regional Ocean Modelling System (ROMS) activated with its built-in Lagrangian model, and forced with wind fields from global models and recorded river volume discharges. The ROMS-Lagrangian model tracks the Lagrangian particles using the spatially interpolated velocities computed on the Eulerian ROMS three-dimensional (3D) grid. The Lagrangian particles are released in the river in proportion to the measured river volume flux. We apply a novel technique that exploits Voronoi polygon areas to convert Lagrangian particle separation into a concentration field. This facilitates comparison with the passive tracer concentrations driven by the Eulerian velocities computed on the ROMS 3D grid. We evaluate the fate of Lagrangian particles activated on a 4-km grid resolution with those of equivalent Eulerian tracer concentrations. For validation, we compare the Lagrangian particles with the Eulerian passive tracer simulated using a higher model grid resolution of 500-m, and found that the computed Lagrangian particle concentrations showed similar overall patterns compared to the passive tracer concentrations from both the coarse 4-km, and high-resolution 500-m Eulerian models. The spatial extent of the particles was in better agreement with the coarse 4-km model than with the higher resolution 500-m model. The clustering of particles resulted in structures at finer scales than the Eulerian model, over the high particle density areas that compared well against observations. The Lagrangian particles are able to capture the general river plume patterns seen in the satellite MODIS images and the satellite derived Chlorophyll-a. We further compare the online ROMS model with an offline particle tracker, OceanPARCELS and determined the similarity of results from both online and offline methods. Overall, our study demonstrates the viability to use Lagrangian particles to reproduce the Eulerian tracer properties, which can be combined with particle properties include tracer age providing to enhance the guidance on the distribution and concentration of effluent from localised flooding river events.
Read full abstract