BackgroundPhotosynthetic systems are known to be sensitive to high temperature stress. To maintain a relatively “normal” level of photosynthetic activities, plants employ a variety of adaptive mechanisms in response to environmental temperature fluctuations. Previously, we reported that the chloroplast-targeted AtFtsH11 protease played an essential role for Arabidopsis plants to survive at high temperatures and to maintain normal photosynthetic efficiency at moderately elevated temperature. To investigate the factors contributing to the photosynthetic changes in FtsH11 mutant, we performed detailed chlorophyll fluorescence analyses of dark-adapted mutant plants and compared them to Col-0 WT plants under normal, two moderate high temperatures, and a high light conditions.ResultsWe found that mutation of FtsH11 gene caused significant decreases in photosynthetic efficiency of photosystems when environmental temperature raised above optimal. Under moderately high temperatures, the FtsH11 mutant showed significant 1) decreases in electron transfer rates of photosystem II (PSII) and photosystem I (PSI), 2) decreases in photosynthetic capabilities of PSII and PSI, 3) increases in non-photochemical quenching, and a host of other chlorophyll fluorescence parameter changes. We also found that the degrees of these negative changes for utilizing the absorbed light energy for photosynthesis in FtsH11 mutant were correlated with the level and duration of the heat treatments. For plants grown under normal temperature and subjected to the high light treatment, no significant difference in chlorophyll fluorescence parameters was found between the FtsH11 mutant and Col-0 WT plants.ConclusionsThe results of this study show that AtFtsH11 is essential for normal photosynthetic function under moderately elevated temperatures. The results also suggest that the network mediated by AtFtsH11 protease plays critical roles for maintaining the thermostability and possibly structural integrity of both photosystems under elevated temperatures. Elucidating the underlying mechanisms of FtsH11 protease in photosystems may lead to improvement of photosynthetic efficiency under heat stress conditions, hence, plant productivity.
Read full abstract